- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources5
- Resource Type
-
0000000005000000
- More
- Availability
-
50
- Author / Contributor
- Filter by Author / Creator
-
-
Theillard, Maxime (5)
-
Binswanger, Adam L. (1)
-
Blomquist, Matthew (1)
-
Fylling, Cayce (1)
-
Gibou, Frédéric (1)
-
Gopinath, Arvind (1)
-
Heydari, A. Ali (1)
-
Kucherova, Anna (1)
-
Saintillan, David (1)
-
Sindi, Suzanne S. (1)
-
Strango, Selma (1)
-
Sukenik, Shahar (1)
-
Tamayo, Joshua (1)
-
West, Scott R. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Blomquist, Matthew; West, Scott R.; Binswanger, Adam L.; Theillard, Maxime (, Journal of Computational Physics)We propose a novel collocated projection method for solving the incompressible Navier-Stokes equations with arbitrary boundaries. Our approach employs non-graded octree grids, where all variables are stored at the nodes. To discretize the viscosity and projection steps, we utilize supra-convergent finite difference approximations with sharp boundary treatments. We demonstrate the stability of our projection on uniform grids, identify a sufficient stability condition on adaptive grids, and validate these findings numerically. We further demonstrate the accuracy and capabilities of our solver with several canonical two- and three-dimensional simulations of incompressible fluid flows. Overall, our method is second-order accurate, allows for dynamic grid adaptivity with arbitrary geometries, and reduces the overhead in code development through data collocation.more » « less
-
Heydari, A. Ali; Sindi, Suzanne S.; Theillard, Maxime (, Journal of Computational Physics)
-
Kucherova, Anna; Strango, Selma; Sukenik, Shahar; Theillard, Maxime (, Journal of Computational Physics)
-
Theillard, Maxime; Gibou, Frédéric; Saintillan, David (, Journal of Computational Physics)
An official website of the United States government
